```
Your name: _____
```

Names of people you worked with: _____

Task:

Consider the distribution of: $\frac{\overline{X}-\mu}{s/\sqrt{n}}$ (which, incidentally, we know is t_{n-1} if $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$.) Let

$$\begin{aligned} \hat{\theta}_b^* &= \text{ estimate of } \theta \text{ from the } b^{th} \text{ resample} \\ \hat{SE}_B^* &= \left[\frac{1}{B-1} \sum_{b=1}^B (\hat{\theta}_b^* - \hat{\theta}^*)^2 \right]^{1/2} \end{aligned}$$

- 1. If you sample B times from a population, how many copies of \overline{X} will there be? How many copies of s/\sqrt{n} will there be?
- 2. If you re-sample B times from a dataset, how many copies of $\hat{\theta}_b^*$ will there be? How many copies of \hat{SE}_B^* ?
- 3. Gosset realized that s varies from sample to sample. In bootstrapping, we want to mimic the process of sampling from a population. What is the problem with using the bootstrap values given above to produce a bootstrapped test statistic?
- 4. To address the problem, suggest a way of estimating the SE of $\hat{\theta}$ separately for each b.

Solution:

- 1. When sampling from a population, there will be B copies each of \overline{X} and s/\sqrt{n} .
- 2. When re-sampling from a dataset, there will be B copies of $\hat{\theta}_{h}^{*}$ and 1 copy of \hat{SE}_{B}^{*} .
- 3. Somehow we need to create a test statistic where both the numerator and the denominator are random variables.
- 4. To find $\hat{SE}^{*}(b)$, we must bootstrap twice. The algorithm is as follows:
 - (a) Generate B_1 bootstrap samples (resamples from the original data), and for each sample \underline{X}^{*b} compute the bootstrap estimate $\hat{\theta}_b^*$.
 - (b) Take B_2 bootstrap samples (resamples from the bootstrapped data) from \underline{X}^{*b} , and estimate the standard error, $\hat{SE}^{*}(b)$.
 - (c) The resulting distribution will be based on B_1 values for $T^*(b) = \frac{\hat{\theta}_b^* \hat{\theta}}{SE^*(b)}$.