Math 152, Fall 2022 Jo Hardin WU # 7Thursday 9/22/22

Your name: _____

Names of people you worked with: _____

Task:

Consider $Z \sim N(0,1), Y = Z^2$. The goal is to find the distribution of Y given the information that Z has a standard normal distribution.

Let Φ and ϕ be the cdf and pdf of Z. Let F_Y and f_Y be the cdf and pdf of Y.

Find $F_Y(y)$ in terms of Φ . (Bonus: then take the derivative to find $f_y(y)$ in terms of ϕ . Hint, start this problem in the following way:

$$F_Y(y) = P(Y \le y) = \dots$$

In the very next step you should plug in Z and keep going!

Solution:

If $Z \sim N(0, 1), Y = Z^2$, then $Y \sim \chi_1^2$.

$$F_Y(y) = P(Y \le y) = P(Z^2 \le y)$$

= $P(-y^{1/2} \le Z \le y^{1/2})$
= $\Phi(y^{1/2}) - \Phi(-y^{1/2}) \quad y > 0$

$$f_Y(y) = \frac{\partial F_Y(y)}{\partial y} = \phi(y^{1/2}) \cdot \frac{1}{2} y^{-1/2} - \phi(-y^{1/2}) \cdot \frac{1}{2} - y^{-1/2}$$
$$= \frac{1}{2} y^{-1/2} (\phi(y^{1/2}) + \phi(-y^{1/2})) \quad y > 0$$
know $\phi(y^{1/2}) = \phi(-y^{1/2}) = \frac{1}{\sqrt{2\pi}} e^{-y/2}$

we know

$$f_Y(y) = y^{-1/2} \frac{1}{\sqrt{2\pi}} e^{-y/2} \quad y > 0$$

= $\frac{1}{2^{1/2} \pi^{1/2}} y^{1/2-1} e^{-y/2} \quad y > 0$
 $Y \sim \chi_1^2$

note: $\Gamma(1/2) = \sqrt{\pi}$.