Your name: \qquad

Names of people you worked with: \qquad

Task:

Consider $Z \sim N(0,1), Y=Z^{2}$. The goal is to find the distribution of Y given the information that Z has a standard normal distribution.

Let Φ and ϕ be the cdf and pdf of Z .
Let F_{Y} and f_{Y} be the cdf and pdf of Y.
Find $F_{Y}(y)$ in terms of Φ. (Bonus: then take the derivative to find $f_{y}(y)$ in terms of ϕ.
Hint, start this problem in the following way:

$$
F_{Y}(y)=P(Y \leq y)=\ldots
$$

In the very next step you should plug in Z and keep going!

Solution:

If $Z \sim N(0,1), Y=Z^{2}$, then $Y \sim \chi_{1}^{2}$.

$$
\begin{aligned}
& F_{Y}(y)=P(Y \leq y)=P\left(Z^{2} \leq y\right) \\
& =P\left(-y^{1 / 2} \leq Z \leq y^{1 / 2}\right) \\
& =\Phi\left(y^{1 / 2}\right)-\Phi\left(-y^{1 / 2}\right) \quad y>0 \\
& f_{Y}(y)=\frac{\partial F_{Y}(y)}{\partial y}=\phi\left(y^{1 / 2}\right) \cdot \frac{1}{2} y^{-1 / 2}-\phi\left(-y^{1 / 2}\right) \cdot \frac{1}{2}-y^{-1 / 2} \\
& =\frac{1}{2} y^{-1 / 2}\left(\phi\left(y^{1 / 2}\right)+\phi\left(-y^{1 / 2}\right)\right) \quad y>0 \\
& \text { we know } \quad \phi\left(y^{1 / 2}\right)=\phi\left(-y^{1 / 2}\right)=\frac{1}{\sqrt{2 \pi}} e^{-y / 2} \\
& f_{Y}(y)=y^{-1 / 2} \frac{1}{\sqrt{2 \pi}} e^{-y / 2} \quad y>0 \\
& =\frac{1}{2^{1 / 2} \pi^{1 / 2}} y^{1 / 2-1} e^{-y / 2} \quad y>0 \\
& Y \sim \chi_{1}^{2}
\end{aligned}
$$

note: $\Gamma(1 / 2)=\sqrt{\pi}$.

