Your name: \qquad

Names of people you worked with: \qquad

Task:

How can a random sample of integers between 1 and N (with N unknown to the researcher) be used to estimate N ? This problem is known as the German tank problem and is derived directly from a situation where the Allies used maximum likelihood to determine how many tanks the Axes had produced. See https://en.wikipedia.org/wiki/German_tank_problem.

1. The tanks are numbered from 1 to N. Working with your group, randomly select five tanks, without replacement, from the bowl. The tanks are numbered:
2. Think about how you would use your data to estimate N. (Come up with at least 3 estimators.) Come to a consensus within the group as to how this should be done. One person from your group will report out after the warm-up is over. Ideally, the person to report out will be someone who has not yet spoken in class this semester. Step-up if you haven't yet spoken. Step back if you speak regularly. Our estimates of N are:

Our rules or formulas for the estimators of N based on a sample of n (here $n=5$) integers are:

Assume the random variables are independently and identically distributed according to a discrete uniform. (Tbh, the iid model is with replacement, but the answers you get aren't much different than without replacement if $n \ll N$.)

$$
X_{i} \sim P(X=x \mid N)=\frac{1}{N} \quad x=1,2, \ldots, N \quad i=1,2, \ldots, n
$$

3. What is the method of moments estimator of N ?
4. What is the maximum likelihood estimator of N ?

Solution:

1. Everyone has different tanks!
2. So many good answers!! See https://m152-stat-theory.netlify.app/handout/tank_152.pdf for some ideas.
3. To find the method of moments estimator, one needs notice that the first moment $(E[X])$ is a function of N. Solve for N as a function of the sample moment to find \hat{N}.

$$
\begin{aligned}
E[X] & =\bar{X} \\
\frac{N+1}{2} & =\bar{X} \\
\widehat{N} & =2 \cdot(\bar{X}-1)
\end{aligned}
$$

4. First, write down the joint likelihood for n observations:

$$
\begin{aligned}
f\left(x_{i} \mid N\right) & =\frac{1}{N} \quad x_{i} \leq N \\
& =\frac{1}{N} I_{[1, N]}\left(x_{i}\right) \\
f(\underline{\mathrm{x}} \mid N) & =\prod_{i=1}^{N} \frac{1}{N} I_{[1, N]}\left(x_{i}\right) \\
& =\frac{1}{N^{n}} I_{[1, N]}\left(\max \left(x_{i}\right)\right)
\end{aligned}
$$

Sketch $f(\underline{\mathrm{x}} \mid N)$ as a function of N and notice that the function (i.e., the likelihood!) goes to zero immediately after $N>\max \left(x_{i}\right)$. Therefore, the MLE of N is $\max \left(x_{i}\right)$.

