Your name: \qquad

Names of people you worked with: \qquad

Task:

Let $X_{1}, X_{2}, \ldots, X_{n}$ be distributed identically and independently $\exp (\theta)$. Find the value of θ that maximizes their joint distribution (i.e., the likelihood function).

$$
f(x \mid \theta)=\theta e^{-x \theta} \quad x>0
$$

Solution:

$$
\begin{aligned}
f(x \mid \theta) & =\theta e^{-x \theta} \quad x>0 \\
f(\underline{x} \mid \theta) & =\theta^{n} e^{-\sum x_{i} \theta \quad \forall x_{i}>0} \\
\frac{\partial f(\underline{x} \mid \theta)}{\partial \theta} & =n \theta^{n-1} e^{-\sum x_{i} \theta}+\theta^{n} e^{-\sum x_{i} \theta}\left(-\sum x_{i}\right) \\
0 & =n \theta^{n-1} e^{-\sum x_{i} \theta}+\theta^{n} e^{-\sum x_{i} \theta}\left(-\sum x_{i}\right) \\
0 & =n+\theta\left(-\sum x_{i}\right) \\
\hat{\theta}= & \frac{1}{\bar{x}} \\
& \text { or } \\
L(\theta) & =n \ln (\theta)-\sum x_{i} \theta \\
\frac{\partial L(\theta)}{\partial \theta}= & \frac{n}{\theta}-\sum x_{i} \\
0 & =\frac{n}{\theta}-\sum x_{i} \\
\hat{\theta}= & \frac{1}{\bar{x}} \\
\frac{\partial^{2} L(\theta)}{\partial \theta^{2}}= & -\frac{n}{\theta^{2}}<0 \\
& \text { maximum }
\end{aligned}
$$

