Your name: \qquad

Names of people you worked with: \qquad

Task: Consider a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from $\operatorname{Poisson}(\lambda)$. The MLE is given by $\hat{\lambda}=\bar{X}$. We want to test the following hypotheses:
$H_{0}: \lambda \leq 4$
$H_{1}: \lambda>4$

Let's say we know that $\bar{X}>4$. What value of λ maximizes $f(\underline{x} \mid \lambda)$ when $\lambda \leq 4$?

1. Calculate $f(\underline{x} \mid \lambda)$.
2. Sketch $f(\underline{x} \mid \lambda)$ (on the y -axis) as a function of λ (on the x -axis). [Feel free to use $n=10, \bar{x}=4.17$, and $\prod x_{i}!=3 \times 10^{18}$ if you want to use desmos or Wolfram/Alpha.]
3. Proof by picture is fine. Or take derivatives.

Also, ask yourself, is $f(\underline{x} \mid \lambda)$ a discrete or continuous function when considering λ as the variable?

Solution:

$$
f(\underline{x} \mid \lambda)=\frac{e^{-n \lambda} \lambda \sum_{i} x_{i}}{\prod_{i} x_{i}!} \quad 0 \leq \lambda<\infty
$$

Below is a plot from a sample of $n=100$ points whose average is $\hat{\lambda}=\bar{x}=4.17$. The maximum value of the function over $\lambda \leq 4$ happens at $\lambda=4$.

How would you show it analytically? The first derivative shows that the function has a single op-
 timum (at \bar{X}). A second derivative show you that the (single) optimum is a maximum. You can also see that the function is continuous in λ. If the function is continuous and has a max at a value which is larger than 4 , we know that for all values less than 4, the maximum will happen when we get as close as possible to the global \max (i.e., when $\lambda=4$).

