Your name: \qquad

Names of people you worked with: \qquad

Task:

Let $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Gamma}(10, \theta), E[X]=10 / \theta$.
Find $T=r(\underline{X})$ such that for $\theta_{1}<\theta_{2}$:

$$
\frac{f\left(\underline{x} \mid \theta_{2}\right)}{f\left(\underline{x} \mid \theta_{1}\right)}
$$

- depends on \underline{x} only through T
- is a nondecreasing function of T over the range of possible values of T

Solution:

$$
\begin{aligned}
f(x \mid \theta) & =\frac{\theta^{10}}{\Gamma(10)} x^{10-1} e^{-x \theta} \quad 0 \leq x \leq \infty \quad \text { let } \theta_{1}<\theta_{2} \\
\frac{f\left(\underline{x} \mid \theta_{2}\right)}{f\left(\underline{x} \mid \theta_{1}\right)} & =\frac{\theta_{2}^{10 n}}{\theta_{1}^{10 n}} e^{-\sum x_{i} \theta_{2}+\sum x_{i} \theta_{1}} \\
& =\left(\frac{\theta_{2}}{\theta_{1}}\right)^{10 n} e^{-\sum x_{i}\left(\theta_{2}-\theta_{1}\right)} \\
T & =-\sum X_{i}
\end{aligned}
$$

$f(\underline{X} \mid \theta)$ has a monotone likelihood ratio in $-\sum X_{i}$.

