Your name: \qquad

Names of people you worked with: \qquad

Task: Let's say we have 2 batches of paint one of which is quick-dry. The paint is unlabeled, and we forgot which was which! We paint 5 boards from batch 1 and record the drying time. We think batch 1 is quick dry. We also believe that the drying times are normally distributed with a true st dev of $\sigma=5 \mathrm{~min}$. The two batches of paint have a true average drying time of either 25 min or 10 min .

$$
\begin{aligned}
& H_{0}: \theta=25 \mathrm{~min} \\
& H_{1}: \theta=10 \mathrm{~min}
\end{aligned}
$$

Using the 5 observed drying times, find δ^{*} that minimizes $\beta\left(\delta^{*}\right)$ subject to $\alpha\left(\delta^{*}\right) \leq .05$ (Note: the level of significance is set to be $\alpha_{0}=0.05$.)

Solution:

$$
\begin{aligned}
& \delta^{*}:\left\{\text { reject } H_{0} \text { if } \bar{x}<17.5-\frac{5}{3 n} \ln (k)\right\} \\
& P\left(\left.\bar{X}<17.5-\frac{5}{3 n} \ln (k) \right\rvert\, \theta=25\right)=0.05 \\
& P\left(Z<\frac{17.5-5 / 3 n \ln (k)-25}{5 / \sqrt{n}}\right)=0.05 \\
& \frac{17.5-5 / 3 n \ln (k)-25}{5 / \sqrt{n}}=-1.645 \\
& \ln ^{*}:\left\{\text { reject } H_{0} \text { if } \bar{x}<21.32\right\}=-11.47 \\
& \text { note: } P(\bar{X}>21.32 \mid \theta=10)=0
\end{aligned}
$$

But wait, there is a really important idea here!!!

We could have done this problem without so much algebra. We know that the test must be based on \bar{X} because that was the statistic which was isolated when the likelihood ratio was calculated.

$$
\delta^{*}:\left\{\text { reject } H_{0} \text { if } \bar{x}<\text { some constant }\right\}
$$

So, we set the probability of rejecting H_{0} when H_{0} is true to 0.05 .

$$
\begin{aligned}
\alpha\left(\delta^{*}\right)=P(\bar{X}<c \mid \theta=25) & =0.05 \\
P\left(Z<\frac{c-25}{5 / \sqrt{n}}\right) & =0.05 \\
\frac{c-25}{5 / \sqrt{n}} & =-1.645 \\
c & =-1.645 * 5 / \sqrt{(5)}+25 \\
\delta^{*}:\left\{\text { reject } H_{0} \text { if } \bar{x}<21.32\right\} &
\end{aligned}
$$

note: $\beta\left(\delta^{*}\right)=P(\bar{X} \geq 21.32 \mid \theta=10) \approx 0$

