Math 152, Fall 2022
Jo Hardin
WU \# 17
Tuesday 11/8/22

Your name: \qquad

Names of people you worked with: \qquad

Task: Consider the following two simple hypotheses (e.g., trying to figure out if the coin you picked from the jar is one of the fair coins or one of the 40% heads coins).
$H_{0}: \theta=0.5$
$H_{1}: \theta=0.4$
Assume the data are distributed $X \sim \operatorname{Bin}(n=20, \theta)$. Assess the test

$$
\delta=\left\{\text { reject } H_{0} \text { if } X \leq 9\right\}
$$

by computing the following (feel free to use either pbinom or the normal approximation and pnorm in R):

1. The size of the test: $\alpha(\delta)$.
2. The power of the test under $H_{1}: 1-\beta(\delta)$.
3. The power function of the test for all possible values of $\theta: \pi(\theta \mid \delta)$.

Do you think δ is good test? Why or why not?

Solution:

1. $\alpha(\delta)=\operatorname{pbinom}(9,20,0.5)=0.412$.
2. $1-\beta(\delta)=\operatorname{pbinom}(9,20,0.4)=0.756$.
3. $\pi(0.5 \mid \delta)=0.412, \pi(0.4 \mid \delta)=0.756$.

The test does great job rejecting the null hypothesis when the coin is a 40% coin. But it is a terrible test when the null hypothesis is true! No one would ever trust our scientific judgement if we went around rejecting true null hypotheses 41.2% of the time. This particular test is not one that should be used.

