Your name: \qquad

Names of people you worked with: \qquad

Task: Let's say we're going to flip a coin 100 times, and we assume the probability of heads is $\theta=0.5$.

1. Use the normal approximation to the binomial to calculate the probability of getting 55 or more heads.
2. For what value of c is the probability of c or more heads no more than 0.05 ?

Recall that if $X \sim \operatorname{Bin}(n, \theta)$ in large samples (big n), the normal distribution approximates the binomial distribution, $X \underset{\sim}{\sim}{ }^{\text {approx }} N(n \theta, n \theta(1-\theta))$.

Solution:

1.

$$
\begin{aligned}
\pi(\theta=0.5 \mid \delta) & =P(X>55 \mid \theta=0.5) \\
& =P\left(Z>\frac{55-n \theta}{\sqrt{n \theta(1-\theta)}}\right) \\
& =P\left(Z>\frac{55-50}{\sqrt{25}}\right) \\
& =P(Z>1)=1-P(Z \leq 1)=0.1587
\end{aligned}
$$

2.

$$
\begin{aligned}
\pi(\theta=0.5 \mid \delta) & =P(X>c \mid \theta=0.5) \\
& \leq 0.05 \\
P(X<c \mid \theta=0.5) & \geq 0.95 \\
P\left(\left.Z<\frac{c-50}{5} \right\rvert\, \theta=0.5\right) & \geq 0.95 \\
\frac{c-50}{5} & \geq 1.645 \\
c & \geq 58.25
\end{aligned}
$$

We let c be as small as possible, so c=58.25 (so you'd have to get at least 59 heads).

