Math 152, Fall 2022 Jo Hardin WU # 16 Thursday 11/3/22

Your name: _____

Names of people you worked with: _____

Task: Let's say we're going to flip a coin 100 times, and we assume the probability of heads is $\theta = 0.5$.

1. Use the normal approximation to the binomial to calculate the probability of getting 55 or more heads.

2. For what value of c is the probability of c or more heads no more than 0.05?

Recall that if $X \sim Bin(n, \theta)$ in large samples (big n), the normal distribution approximates the binomial distribution, $X \sim N(n\theta, n\theta(1-\theta))$.

Solution:

1.

$$\pi(\theta = 0.5|\delta) = P(X > 55|\theta = 0.5)$$

= $P(Z > \frac{55 - n\theta}{\sqrt{n\theta(1 - \theta)}})$
= $P(Z > \frac{55 - 50}{\sqrt{25}})$
= $P(Z > 1) = 1 - P(Z \le 1) = 0.1587$

2.

$$\begin{aligned} \pi(\theta = 0.5|\delta) &= P(X > c|\theta = 0.5) \\ &\leq 0.05 \\ P(X < c|\theta = 0.5) &\geq 0.95 \\ P(Z < \frac{c - 50}{5}|\theta = 0.5) &\geq 0.95 \\ \frac{c - 50}{5} &\geq 1.645 \\ c &\geq 58.25 \end{aligned}$$

We let c be as small as possible, so c=58.25 (so you'd have to get at least 59 heads).