Your name: \qquad

Names of people you worked with: \qquad

Task:

Consider the result derived in class:

$$
\begin{equation*}
\left.\left(\frac{\lambda_{1} \alpha_{1}}{\beta_{1}}\right)^{1 / 2}\left(\mu-\mu_{1}\right) \right\rvert\, \underline{x} \sim t_{2 \alpha_{1}} \tag{1}
\end{equation*}
$$

where $\mu_{1}=\frac{\lambda_{0} \mu_{0}+n \bar{x}}{\lambda_{0}+n}, \quad \lambda_{1}=\lambda_{0}+n, \quad \alpha_{1}=\alpha_{0}+\frac{n}{2}, \quad \beta_{1}=\beta_{0}+\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\frac{n \lambda_{0}\left(\bar{x}-\mu_{0}\right)^{2}}{2\left(\lambda_{0}+n\right)}$.
Provide the formula for a 98% posterior interval for μ, in terms of $\mu_{1}, \lambda_{1}, \alpha_{1}, \beta_{1}$.

Solution:

Let the confidence level be $1-\alpha$. As with frequentist CI, the interval can be built by pivoting around the value of interest, μ.

$$
\begin{aligned}
& P(-c \leq U \leq c \mid \underline{x})=1-\alpha \\
& P\left(\left.-c \leq\left(\frac{\lambda_{1} \alpha_{1}}{\beta_{1}}\right)^{1 / 2}\left(\mu-\mu_{1}\right) \leq c \right\rvert\, \underline{x}\right)=1-\alpha \\
& P\left(\left.\mu_{1}-c\left(\frac{\beta_{1}}{\lambda_{1} \alpha_{1}}\right)^{1 / 2} \leq \mu \leq \mu_{1}+c\left(\frac{\beta_{1}}{\lambda_{1} \alpha_{1}}\right)^{1 / 2} \right\rvert\, \underline{x}\right)=1-\alpha \\
& \Rightarrow \quad \mu_{1} \pm c\left(\frac{\beta_{1}}{\lambda_{1} \alpha_{1}}\right)^{1 / 2} \text { is a }(1-\alpha) 100 \% \text { posterior interval for } \mu \text {. } \\
& \text { And } c=\mathrm{qt}\left(1-\alpha / 2,2 \alpha_{1}\right) \text {, here } c=\mathrm{qt}\left(0.99, \alpha_{1}\right) \text {. }
\end{aligned}
$$

