Math 152, Fall 2022
Jo Hardin
WU \# 10
Tuesday 10/4/22

Your name: \qquad

Names of people you worked with: \qquad

Task:

According to some investors, foreign stocks have the potential for high yield, but the variability in their dividends may be great. Let's say we take a random sample of 10 foreign stocks and assume that they come from a normal distribution. The data produce a sample mean of $\$ 1$ dividend per share with a sample standard deviation of $\$ 2$.

Find a 95% CI for the true SD (i.e., σ) associated with dividends on foreign stocks.

Hint: you will need to use the χ^{2} distribution and one of the statistics discussed previously in class to start the problem. Try writing an equation of the following form:

$$
P(\text { a number } \leq \text { statistic and the parameter of interest } \leq \text { another number })=0.95
$$

Solution:

If the dividends are actually normally distributed (not really a reasonable assumption here), then theory tells us that:

$$
\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{9}^{2}
$$

Using σ to pivot (that is, putting σ in the middle of the probability statement) we get:

$$
\begin{aligned}
P\left(\sum\left(X_{i}-\bar{X}\right)^{2} / \chi_{9, .975}^{2} \leq \sigma^{2} \leq \sum\left(X_{i}-\bar{X}\right)^{2} / \chi_{9, .025}^{2}\right) & =0.95 \\
P\left(\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} / \chi_{9, .975}^{2}} \leq \sigma \leq \sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} / \chi_{9, .025}^{2}}\right) & =0.95 \\
P\left(\sqrt{s^{2} \cdot(n-1) / \chi_{9, .975}^{2}} \leq \sigma \leq \sqrt{s^{2} \cdot(n-1) / \chi_{9, .025}^{2}}\right) & =0.95
\end{aligned}
$$

[Important!!!] where $X_{i}\left(\right.$ or $\left.s^{2}\right)$ is the random variable, the only thing which varies in the above probability statement.Otherwise, it doesn't make any sense to be talking about a probability, you are a frequentist today, after all.

Therefore, the 95% confidence interval for σ is: $\left(\sqrt{s^{2} \cdot(n-1) / \chi_{9,975}^{2}}, \sqrt{s^{2} \cdot(n-1) / \chi_{9,025}^{2}}\right)$.
Note that $\chi_{9,025}^{2}=2.7$ and $\chi_{9,975}^{2}=19.02$. Giving a 95% CI for σ of:

$$
\begin{equation*}
\left(\sqrt{2^{2} \cdot 9 / 19.02}, \sqrt{2^{2} \cdot 9 / 2.7}\right) \tag{1.38,3.65}
\end{equation*}
$$

The correct interpretation is: we are 95% confident that the true standard deviation of dividends on foreign stocks in the population from which these data were randomly sampled is between $\$ 1.38$ and $\$ 3.65$. [Fun fact: unlike the t-CI for the mean, the method applied above is very sensitive to the normality assumption.]

