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How can a random sample of integers between 1 and 𝑁 (with 𝑁 unknown to the researcher)
be used to estimate 𝑁? This problem is known as the German tank problem and is derived
directly from a situation where the Allies used maximum likelihood to determine how many
tanks the Axes had produced. See https://en.wikipedia.org/wiki/German_tank_problem.

1. The tanks are numbered from 1 to 𝑁 . Working with your group, randomly select five
tanks, without replacement, from the bowl. The tanks are numbered:

2. Think about how you would use your data to estimate 𝑁 . (Come up with at least 3
estimators.) Come to a consensus within the group as to how this should be done. One
person from your group will report out after the warm-up is over. Ideally, the person to
report out will be someone who has not yet spoken in class this semester. Step-up if you
haven’t yet spoken. Step back if you speak regularly.

The estimates of 𝑁 are:

The rules or formulas for the estimators of 𝑁 based on a sample of n (in your case 5) integers
are:

Assuming the random variables are distributed according to a discrete uniform. (Tbh, this
model is with replacement, but the answers you get aren’t much different than without re-
placement if 𝑛 << 𝑁 .)

𝑋𝑖 ∼ 𝑃(𝑋 = 𝑥|𝑁) = 1
𝑁 𝑥 = 1, 2, … , 𝑁 𝑖 = 1, 2, … , 𝑛

3. What is the method of moments estimator of 𝑁?

4. What is the maximum likelihood estimator of 𝑁? (Hint: draw a picture!)

Theoretical Mean Squared Error

Most of our estimators are made up of four basic functions of the data: mean, median, min,
and max. Fortunately, we know something about their moments:
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Using the information on expected value and variance, we can calculate the MSE for 4 of the
estimators that we have derived. (Remember that MSE = Variance + Bias2.)
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Empirical MSE

We don’t need to know the theoretical expected value or variance of the functions to approx-
imate the MSE. We can visualize the sampling distributions and also calculate the actual
empirical MSE for any estimator we come up with.
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By changing the population size and the sample size, we can assess how the estimators compare
and whether one is particularly better under a given setting.

Some possible estimators of 𝑁 are:1

̂𝑁1 = 2 ⋅ 𝑋 − 1 the MOM
̂𝑁2 = 2 ⋅ median(𝑋) − 1
̂𝑁3 = max(𝑋) the MLE
̂𝑁4 = 𝑛 + 1

𝑛 max(𝑋) less biased version of the MLE

̂𝑁5 = max(𝑋) + min(𝑋)
̂𝑁6 = 𝑛 + 1

𝑛 − 1[max(𝑋) − min(𝑋)]

When 𝑛 = 5, which means the sample size is 5 (whereas the population number is 447), the
measurements are shown below. We want empirical MSE to be lowest and bias close to 0. The
modified maximum has the lowest MSE and thus this estimator is the best when 𝑛 = 5. The
histograms estimating the sampling distributions are illustrated below.

calculate_N <- function(nsamp,npop){
mysample = sample(1:npop,nsamp,replace=F) # what does this line do?
xbar2 <- 2 * mean(mysample) - 1
median2 <- 2 * median(mysample) - 1

1Note that the MOM and MLE estimators were derived under the assumption that the data are iid from a
population of discrete uniform values. Because our data is sampled without replacement, we don’t have an
iid model. However, if 𝑛 <<< 𝑁, the iid discrete uniform is a reasonable model for the situation at hand.
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samp.max <- max(mysample)
mod.max <- ((nsamp + 1)/nsamp) * max(mysample)
sum.min.max <- min(mysample) + max(mysample)
diff.min.max <- ((nsamp + 1)/(nsamp - 1)* (max(mysample) - min(mysample)))
data.frame(xbar2, median2, samp.max, mod.max, sum.min.max, diff.min.max,nsamp,npop)

}

reps <- 2
nsamp_try <- 5
npop_try <- 447
map_df(1:reps, ~map2(nsamp_try, npop_try, calculate_N))

xbar2 median2 samp.max mod.max sum.min.max diff.min.max nsamp npop
1 375.0 351 434 520.8 486 573 5 447
2 333.4 265 373 447.6 398 522 5 447

reps <- 1000
results <- map_df(1:reps, ~map2(nsamp_try, npop_try, calculate_N))

# making the results long instead of wide:
results_long <- results %>%
pivot_longer(cols = xbar2:diff.min.max,

names_to = "estimator",
values_to = "estimate")

# how is results different from results_long? let's look at it:
results_long %>% head()

# A tibble: 6 x 4
nsamp npop estimator estimate
<dbl> <dbl> <chr> <dbl>

1 5 447 xbar2 163.
2 5 447 median2 141
3 5 447 samp.max 186
4 5 447 mod.max 223.
5 5 447 sum.min.max 204
6 5 447 diff.min.max 252
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results_long %>%
group_by(nsamp, npop, estimator) %>%
summarize(mean = mean(estimate),

median = median(estimate),
bias = mean(estimate - npop),
var = var(estimate),
mse = (mean(estimate - npop))^2 + var(estimate))

# A tibble: 6 x 8
# Groups: nsamp, npop [1]
nsamp npop estimator mean median bias var mse
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 5 447 diff.min.max 449. 466. 1.77 14316. 14319.
2 5 447 median2 451. 451 4.48 29129. 29150.
3 5 447 mod.max 450. 468 2.76 5423. 5431.
4 5 447 samp.max 375. 390 -72.2 3766. 8979.
5 5 447 sum.min.max 450. 449 3.42 9114. 9126.
6 5 447 xbar2 451. 450. 3.58 13344. 13356.

results_long %>%
ggplot(aes(x = estimate)) +
geom_histogram() +
geom_vline(aes(xintercept = npop), color = "red") +
facet_grid(nsamp ~ estimator) +
ggtitle("sampling distributions of estimators of N, pop size = 447")
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