Tank Estimators

Jo Hardin

Fall 2022

How can a random sample of integers between 1 and N (with N unknown to the researcher) be used to estimate N ? This problem is known as the German tank problem and is derived directly from a situation where the Allies used maximum likelihood to determine how many tanks the Axes had produced. See https://en.wikipedia.org/wiki/German_tank_problem.

1. The tanks are numbered from 1 to N. Working with your group, randomly select five tanks, without replacement, from the bowl. The tanks are numbered:
2. Think about how you would use your data to estimate N. (Come up with at least 3 estimators.) Come to a consensus within the group as to how this should be done. One person from your group will report out after the warm-up is over. Ideally, the person to report out will be someone who has not yet spoken in class this semester. Step-up if you haven't yet spoken. Step back if you speak regularly.

The estimates of N are:
The rules or formulas for the estimators of N based on a sample of n (in your case 5) integers are:

Assuming the random variables are distributed according to a discrete uniform. (Tbh, this model is with replacement, but the answers you get aren't much different than without replacement if $n \ll N$.)

$$
X_{i} \sim P(X=x \mid N)=\frac{1}{N} \quad x=1,2, \ldots, N \quad i=1,2, \ldots, n
$$

3. What is the method of moments estimator of N ?
4. What is the maximum likelihood estimator of N ? (Hint: draw a picture!)

Theoretical Mean Squared Error

Most of our estimators are made up of four basic functions of the data: mean, median, min, and max. Fortunately, we know something about their moments:

$\mathrm{g}(\underline{X})$	$\mathrm{E}(\mathrm{g}(\underline{X}))$	$\operatorname{Var}(\mathrm{g}(\underline{X}))$
\bar{X}	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12 n}$
$\operatorname{median}(\underline{X})=\mathrm{M}$	$\frac{N+1}{2}$	$\frac{(N-1)^{2}}{n n}$
$\min (\underline{X})$	$\frac{(N-1)}{n}+1$	$\left(\frac{N-1}{n}\right)^{2}$
$\max (\underline{X})$	$N-\frac{(N-1)}{n}$	$\left(\frac{N-1}{n}\right)^{2}$

Using the information on expected value and variance, we can calculate the MSE for 4 of the estimators that we have derived. (Remember that MSE $=$ Variance + Bias 2.)

$$
\begin{align*}
\operatorname{MSE}(2 \cdot \bar{X}-1) & =\frac{4(N+1)(N-1)}{12 n}+\left(2\left(\frac{N+1}{2}\right)-1-N\right)^{2} \\
& =\frac{4(N+1)(N-1)}{12 n} \tag{1}\\
\operatorname{MSE}(2 \cdot M-1) & =\frac{4(N-1)^{2}}{4 n}+\left(2\left(\frac{N+1}{2}\right)-1-N\right)^{2} \\
& =\frac{4(N-1)^{2}}{4 n} \tag{2}\\
\operatorname{MSE}(\max (\underline{X})) & =\left(\frac{N-1}{n}\right)^{2}+\left(N-\frac{(N-1)}{n}-N\right)^{2} \\
& =\left(\frac{N-1}{n}\right)^{2}+\left(\frac{N-1}{n}\right)^{2}=2 *\left(\frac{N-1}{n}\right)^{2} \tag{3}\\
\operatorname{MSE}\left(\left(\frac{n+1}{n}\right) \max (\underline{X})\right) & =\left(\frac{n+1}{n}\right)^{2}\left(\frac{N-1}{n}\right)^{2}+\left(\left(\frac{n+1}{n}\right)\left(N-\frac{N-1}{n}\right)-N\right)^{2}(4)
\end{align*}
$$

Empirical MSE

We don't need to know the theoretical expected value or variance of the functions to approximate the MSE. We can visualize the sampling distributions and also calculate the actual empirical MSE for any estimator we come up with.

By changing the population size and the sample size, we can assess how the estimators compare and whether one is particularly better under a given setting.
Some possible estimators of N are: ${ }^{1}$

$$
\begin{aligned}
& \hat{N}_{1}=2 \cdot \bar{X}-1 \quad \text { the MOM } \\
& \hat{N}_{2}=2 \cdot \operatorname{median}(\underline{X})-1 \\
& \hat{N}_{3}=\max (\underline{X}) \quad \text { the MLE } \\
& \hat{N}_{4}=\frac{n+1}{n} \max (\underline{X}) \quad \text { less biased version of the MLE } \\
& \hat{N}_{5}=\max (\underline{X})+\min (\underline{X}) \\
& \hat{N}_{6}=\frac{n+1}{n-1}[\max (\underline{X})-\min (\underline{X})]
\end{aligned}
$$

When $n=5$, which means the sample size is 5 (whereas the population number is 447), the measurements are shown below. We want empirical MSE to be lowest and bias close to 0 . The modified maximum has the lowest MSE and thus this estimator is the best when $n=5$. The histograms estimating the sampling distributions are illustrated below.

```
calculate_N <- function(nsamp,npop){
    mysample = sample(1:npop,nsamp,replace=F) # what does this line do?
    xbar2 <- 2 * mean(mysample) - 1
    median2 <- 2 * median(mysample) - 1
```

[^0]```
 samp.max <- max(mysample)
 mod.max <- ((nsamp + 1)/nsamp) * max(mysample)
 sum.min.max <- min(mysample) + max(mysample)
 diff.min.max <- ((nsamp + 1)/(nsamp - 1)* (max(mysample) - min(mysample)))
 data.frame(xbar2, median2, samp.max, mod.max, sum.min.max, diff.min.max,nsamp,npop)
}
reps <- 2
nsamp_try <- 5
npop_try <- 447
map_df(1:reps, ~map2(nsamp_try, npop_try, calculate_N))
```

| xbar2 | median2 | samp. max | mod.max | sum.min. max | diff.min.max | nsamp | npop |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 375.0 | 351 | 434 | 520.8 | 486 | 573 | 5 |
| 2 | 333.4 | 265 | 373 | 447.6 | 398 | 522 | 5 |

reps <- 1000
results <- map_df(1:reps, ~map2(nsamp_try, npop_try, calculate_N))
\# making the results long instead of wide:
results_long <- results \%>\%
pivot_longer (cols = xbar2:diff.min.max,
names_to = "estimator",
values_to = "estimate")
\# how is results different from results_long? let's look at it:
results_long \%>\% head()
\# A tibble: 6 x 4
nsamp npop estimator estimate
<dbl> <dbl> <chr> <dbl>
15447 xbar2 163.
25447 median2 141
35447 samp.max 186
45447 mod.max 223.
$5 \quad 5 \quad 447$ sum.min.max 204
65447 diff.min.max 252

```
results_long %>%
 group_by(nsamp, npop, estimator) %>%
 summarize(mean = mean(estimate),
 median = median(estimate),
 bias = mean(estimate - npop),
 var = var(estimate),
mse = (mean(estimate - npop))^2 + var(estimate))
```

\# A tibble: 6 x 8
\# Groups: $\quad$ nsamp, npop [1]
\# Groups: nsamp, npop [1]
nsamp npop estimator mean median bias var mse
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
15447 diff.min.max 449. 466. 1.77 14316. 14319.
25447 median2 451. $451 \quad 4.48$ 29129. 29150.
$35447 \bmod . \max 450.468 \quad 2.76$ 5423. 5431.
$4 \quad 5 \quad 447$ samp.max $\quad 375 . \quad 390-72.2 \quad$ 3766. 8979.
$5 \quad 5 \quad 447$ sum.min.max $450.449 \quad 3.42$ 9114. 9126.
65447 xbar2 451. 450. 3.58 13344. 13356.

```
results_long %>%
 ggplot(aes(x = estimate)) +
 geom_histogram() +
 geom_vline(aes(xintercept = npop), color = "red") +
 facet_grid(nsamp ~ estimator) +
 ggtitle("sampling distributions of estimators of N, pop size = 447")
```

sampling distributions of estimators of $N$, pop size $=447$



[^0]:    ${ }^{1}$ Note that the MOM and MLE estimators were derived under the assumption that the data are iid from a population of discrete uniform values. Because our data is sampled without replacement, we don't have an iid model. However, if $n \lll N$, the iid discrete uniform is a reasonable model for the situation at hand.

